RUTGERS
 THE STATE UNIVERSITY

Rain Garden Design (Rooftop and Driveway/ Parking Lot)

Rain Garden Design Checklist

\checkmark Determine drainage area (rooftop or driveway/ parking lot)
$\checkmark \quad$ Measure drainage area
$\checkmark \quad$ Measure percent slope
\checkmark Correspond percent slope to rain garden depth
\checkmark Correspond drainage area to rain garden size using New Jersey's Water Quality Design Storm (1.25" rain over 2 hours)
\checkmark Analyze soil (soil texture, percolation test, soil compaction)
\checkmark Determine soil amendments, if necessary
\checkmark Determine rain garden inlet
\checkmark Determine erosion potential
$\checkmark \quad$ Determine rain garden overflow
$\checkmark \quad$ Determine mulch quantity
\checkmark Determine plant quantity
\checkmark Summarize rain garden design

RUTGERS

Determine Drainage Area \& Measure Drainage Area

Rooftop Scenario

RUTGERS

Determine Drainage Area \& Measure Drainage Area

Driveway/ Parking Lot Scenarios

RUTGERS New Jersey Agricult
Experiment Station

Determine Drainage Area \& Measure Drainage Area

Area of Square/Rectangle $=$ Length \mathbf{x} Width

Area of Triangle $=($ Base \times Height $) / 2$

$$
\begin{aligned}
\text { Area } & =\left(20^{\prime} \times 12^{\prime}\right) / 2 \\
& =\left(240 \mathrm{ft}^{2}\right) / 2 \\
& =120 \mathrm{ft}^{2}
\end{aligned}
$$

Base $=20^{\prime}$

Measure Percent Slope

Figure 3 The string should be tied to the base of the uphill stake, then tied to the downhill stake at the same level.

$\frac{\text { Height }}{\text { Width }} \times 100=\%$ Slope

Correspond Percent Slope to Rain Garden Depth

Percent Slope	Typical Depth
$\leq 4 \%$	$3 "-5 "$
$5 \%-7 \%$	$6 "-7 "$
$8 \%-12 \%$	$8 "$ maximum depth
$>12 \%$	Consider another location

Exception: Sites with poor percolation or high percentage of clay soils will be shallower with a larger surface area since they percolate slowly (see Tips for Rain Gardens in Clay Soils worksheet)

Rain Garden Sizing Table Based on New Jersey's Water Quality Design Storm			
Drainage Area	Size of 3" Deep Rain Garden	Size of 6" Deep Rain Garden	Size of 8" Deep Rain Garden
$500 \mathrm{ft}^{2}$	$200 \mathrm{ft}^{2}$	$100 \mathrm{ft}^{2}$	$75 \mathrm{ft}^{2}$
$750 \mathrm{ft}^{2}$	$300 \mathrm{ft}^{2}$	$150 \mathrm{ft}^{2}$	$112 \mathrm{ft}^{2}$
$1000 \mathrm{ft}^{2}$	$400 \mathrm{ft}^{2}$	$200 \mathrm{ft}^{2}$	$149 \mathrm{ft}^{2}$
$1500 \mathrm{ft}^{2}$	$600 \mathrm{ft}^{2}$	$300 \mathrm{ft}^{2}$	$224 \mathrm{ft}^{2}$
$2000 \mathrm{ft}^{2}$	$800 \mathrm{ft}^{2}$	$400 \mathrm{ft}^{2}$	299 ft ${ }^{2}$

Correspond Drainage Area to Rain Garden Size using NJ's Water Quality Design Storm

How did we do this?

[Drainage Area (square feet) x NJ's Water Quality Design Storm (feet)] [Depth (feet)]

Size of = Rain Garden (square feet)

Rooftop Example:

Rooftop \#1:
Length = 10'

Width = 20'
Drainage Area $=$ Length \times Width

$$
=10^{\prime} \times 20^{\prime}
$$

$$
=200 \mathrm{ft}^{2}
$$

Rooftop \#2:
Length = 10'
Width = 10'
Drainage Area $=$ Length \times Width

$$
\begin{aligned}
& =10^{\prime} \times 10^{\prime} \\
& =100 \mathrm{ft}^{2}
\end{aligned}
$$

Total Drainage Area = DA of Rooftop \#1 + DA of Rooftop \#2

$$
\begin{aligned}
& =200 \mathrm{ft}^{2}+100 \mathrm{ft}^{2} \\
& =300 \mathrm{ft}^{2}
\end{aligned}
$$

$\xrightarrow{\left[300 \mathrm{ft}^{2} \times 0.1^{\prime}\right]}=60 \mathrm{ft}^{2}$ rain garden $6 "$ deep

CHEAT SHEET

 \checkmark NJ's Water Quality Design Storm = 1.25" $=0.1^{\prime}$$\checkmark 3^{\prime \prime}=0.25^{\prime}$
$\checkmark 6^{\prime \prime}=0.50^{\prime}$
$\checkmark 8^{\prime \prime}=0.67^{\prime}$
$=200 \mathrm{ft}^{2}+100 \mathrm{ft}^{2}$

RUTGERS

Correspond Drainage Area to Rain Garden Size using NJ's Water Quality Design Storm

How did we do this?

[Drainage Area (square feet) x NJ's Water Quality Design Storm (feet)] [Depth (feet)]

Length $=20^{\prime}$
Width = 30'
Drainage Area $=$ Length \times Width
$=20^{\prime} \times 30^{\prime}$
$=600 \mathbf{f t}^{2}$

Size of = Rain Garden (square feet)
Parking Lot Example:

CHEAT SHEET

 \checkmark NJ's Water QualityDesign Storm $=1.25^{\prime \prime}$
$=0.1^{\prime}$
$\checkmark 3^{\prime \prime}=0.25^{\prime}$
$\checkmark 6^{\prime \prime}=0.50^{\prime}$
$\checkmark 8^{\prime \prime}=0.67^{\prime}$
[$\left.600 \mathrm{ft}^{2} \times 0.1^{\prime}\right]$ [0.25']
$=240 \mathrm{ft}^{2}$ rain garden 3" deep

- Soil texture

Soil Texture Test
Roll soil into a ball in hand and see how it forms

- Hard ball - Clay/Silt soil
- Soft ball - Loamy soil
- No ball - Sandy soil
- Percolation test
- Soil compaction

Wire Flag Test

Poke wire flag in ground

- Easily penetrates 6-8" or more
- Compacted, difficult to insert

Optimal sand content for a rain garden is 70\%

General Soil Amendments Amounts for a 100 sq ft Rain Garden that is 6 Inches Deep

Determine Rain Garden Overflow

Where will the excess stormwater runoff go in a heavy storm event?

- Overflow is away from buildings
- Berm higher near building
- Overflow sheets over lawn or garden

- Overflow sheets over driveway or walkway
- Flows onto street - an existing storm drain can be used as an outlet for a rain garden

How did we determine how much coarse sand to add?

Class	Texture	Recommended Amendments	
Soil Texture Class	A	Sandy	Compost helpful, but not required
	B	Silt loam/Loam	Add 1"-2" concrete or bank-run sand
C	Sandy clay/ Loam	Add 2"-4" concrete or bank-run sand	
D	Clayey	Add 2"-4" concrete or bank-run sand	

How many cubic yards of coarse sand to buy
\times (Rain garden surface area in square feet) $=$ Cubic yards

Use sand with a mixture of grain sizes. Do not use mason or ball field sand.

RUTGERS

Determine Rain Garden Inlet

How will the stormwater runoff enter the rain garden?

- Extended downspout/gutter
- Stone or concrete spillway
- Across lawn via a gradual slope
- Vegetated or stone-lined swales

- Diversion berm along the bottom of slope
- Paved surface

Determine Erosion Potential

Will the velocity and erosion of the stormwater runoff be a problem?

- No
- Yes, erosion is possible. Address with:
- Grading
- Rocks or obstructions to slow flow
- Rocks to stabilize
- Erosion control blanket

Determine Mulch Quantity

- Triple-shredded hardwood mulch with no dye is used in a rain garden
- Mulch should be maintained at a 3 depth in a rain garden
- The benefits of mulch:
- Keeps soil moist, which allows for percolation of rain water
- Protects plants and makes weeding easier
- Minimizes erosion of the rain
 garden soil

RUTGERS

Determine Mulch Quantity

Amount of Mulch Required for a Three Inch Thick Layer

Size of Rain Garden	Approximate Amount of Mulch		
25 square feet	0.25 cubic yard		
50 square feet	0.50 cubic yard		
100 square feet	1.0 cubic yard		
200 square feet	2.0 cubic yards		(Triple-Shredded Hardwood
:---			
Mulch with No Dye)			

[^0]
Determine Plant Quantity

Experiment Statior

Approximate Amount of Plants Based on Future Mature Size

Size of Rain Garden	Approximate Amount of Plants
100 square feet	1 Small Tree (Optional) 7 Shrubs
24 Herbaceous Species	
200 square feet	1 Small Tree (Optional) 14 Shrubs 48 Herbaceous Species

Leonard Park, Morris County

RUTGERS

Summarize Rain Garden Design

- Determine rain garden size and depth, what soil amendments are needed (if necessary), mulch quantity, plant quantity, and other materials (river rock, deer fencing, soaker hose, etc.)
- Use the Rain Garden Site Visit Worksheet (Pre-Installation) for assistance!

[^0]: Springfield Municipal Annex Building, Union County

